INFORME

DETERMINACIÓN DE PUNTOS DE CONEXIÓN AL STT

Dirección de Planificación y Desarrollo
CDECSIC
01 de julio de 2015
Estudio: Diagnóstico de utilización esperada del STT y requerimientos de expansión

<table>
<thead>
<tr>
<th>Rev</th>
<th>Fecha</th>
<th>Comentario</th>
<th>Realizó</th>
<th>Revisó / Aprobó</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14-04-2015</td>
<td>Versión Preliminar DPD</td>
<td>Diego Pizarro G. Cristián Torres B.</td>
<td>Gabriel Carvajal M.</td>
</tr>
<tr>
<td>2</td>
<td>01-07-2015</td>
<td>Versión Definitiva DPD</td>
<td>Diego Pizarro G. Cristián Torres B.</td>
<td>Gabriel Carvajal M.</td>
</tr>
</tbody>
</table>
ÍNDICE DE CONTENIDO

1 INTRODUCCIÓN .. 9

2 ANTECEDENTES .. 11

2.1 TIPOS DE CONEXIÓN AL SISTEMA TRONCAL .. 11

2.1.1 CONEXIÓN A UNA BARRA EXISTENTE ... 11

2.1.2 CONEXIÓN EN DERIVACIÓN O TAP-OFF .. 11

2.1.3 CONEXIÓN EN LÍNEAS EN LAS CUALLES EXISTE UN TAP-OFF ... 12

2.1.4 CONEXIÓN SECCIONANDO LÍNEA SIMPLE CIRCUITO ... 12

2.1.5 CONEXIÓN SECCIONANDO UN CIRCUITO DE UNA LÍNEA DE DOBLE CIRCUITO 12

2.1.6 CONEXIÓN SECCIONANDO AMBOS CIRCUITOS .. 13

2.1.7 CONEXIÓN DE MÚLTIPLES PROYECTOS EN PUNTO COMÚN ... 13

2.2 RESTRICCIONES EN EL STT ANTE CONEXIONES SIN COORDINACIÓN 14

2.2.1 RESTRICCIÓN DE TRANSMISIÓN POR CONEXIÓN A 1 DE 2 CIRCUITOS 15

2.2.2 RESTRICCIÓN DE TRANSMISIÓN POR SECCIONAMIENTO DE 1 DE 3 CIRCUITOS 17

2.2.3 RESTRICCIÓN DE TRANSMISIÓN POR SECCIONAMIENTO DE 2 DE 3 CIRCUITOS 18

2.2.4 RESTRICCIÓN DE TRANSMISIÓN POR SECCIONAMIENTO DE 2 DE 3 CIRCUITOS 18

2.2.5 RESTRICCIÓN DE TRANSMISIÓN POR SECCIONAMIENTO SIMULTÁNEO SIMPLE Y DOBLE DE 3 CIRCUITOS ... 19

3 DESARROLLO .. 21

3.1 GENERALIDADES ... 21

3.2 METODOLOGÍA PARA DEFINICIÓN DE ÁREA DE CONEXIÓN ÓPTIMA 21

3.3 CRITERIOS PARA DEFINICIÓN DE ÁREA DE CONEXIÓN ÓPTIMA ... 22

3.4 ANÁLISIS DE CUMPLIMIENTO ARTÍCULO 3-22 ... 27

4 APLICACIÓN DE METODOLOGÍA A TRAMOS DEL SISTEMA DE TRANSMISIÓN TRONCAL DEL SIC 28

4.1 TRAMO 220 kV DIEGO DE ALMAGRO – CARDONES 220 kV ... 28
4.1.1 Esquema Gráfico .. 28
4.1.2 Tramo Diego de Almagro – Carrera Pinto ... 29
4.1.3 Tramo Carrera Pinto – Zona San Andrés ... 31
4.1.4 Tramo Zona San Andrés – Cardones ... 32
4.2 Tramo Cardones – Maitencillo 220 kV .. 33
4.2.1 Esquema Gráfico ... 33
4.2.2 Consideraciones Seccionamiento Uno o Dos Circuitos ... 33
4.2.3 Distancia Entre Puntos de Conexión ... 33
4.2.4 Proyectos Catastrados ... 33
4.2.5 Proyectos de Transmisión ... 34
4.2.6 Flujos por Tramo ... 34
4.2.7 Definición de Zonas de Conexión .. 35
4.2.8 Asignación de Zonas de Conexión a Proyectos Catastrados .. 35
4.3 Tramo Maitencillo – Punta Colorada 220 kV .. 36
4.3.1 Esquema Gráfico ... 36
4.3.2 Consideraciones Seccionamiento Uno o Dos Circuitos ... 36
4.3.3 Distancia Entre Puntos de Conexión ... 37
4.3.4 Proyectos Catastrados ... 37
4.3.5 Proyectos de Transmisión ... 37
4.3.6 Flujos por Tramo ... 38
4.3.7 Definición de Zonas de Conexión .. 38
4.3.8 Asignación de Zonas de Conexión a Proyectos Catastrados .. 38
4.4 Tramo Punta Colorada – Pan de Azúcar 220 kV ... 38
4.4.1 Esquema Gráfico ... 38
4.4.2 Consideraciones Seccionamiento Uno o Dos Circuitos ... 39
4.4.3 Distancia Entre Puntos de Conexión ... 39
4.4.4 Proyectos Catastrados ... 39
Determinación de puntos de conexión al STT – 01 de julio 2015
Determinación de puntos de conexión al STT – 01 de julio 2015
4.13.5 PROYECTOS DE TRANSMISIÓN ... 62
4.13.6 FLUJOS POR TRAMO ... 62
4.13.7 DEFINICIÓN DE ZONAS DE CONEXIÓN .. 62
4.13.8 ASIGNACIÓN DE ZONA DE CONEXIÓN A PROYECTOS CATASTRADOS .. 62

5 COMENTARIOS FINALES Y CONCLUSIONES .. 64
1 INTRODUCCIÓN

La normativa vigente establece como una de las funciones de los CDEC el garantizar el acceso abierto tanto a las instalaciones de Transmisión Troncal como de Subtransmisión (Art. 137 y 225 DFL N°4).

Antes de las modificaciones realizadas en el año 2014 a la Norma Técnica de Seguridad y Calidad de Servicio (“NTSyCS”), las decisiones del CDEC de aceptar la conexión de proyectos al Sistema Troncal se fundaban en consideración a las restricciones técnicas de la NTSyCS¹, sin considerar aspectos como el óptimo económico para el sistema o la coordinación de los diferentes interesados en la conexión, ni la cantidad o ubicación de los seccionamientos de tramos del sistema troncal.

Sin embargo, con el crecimiento de los emprendimientos de generación, se hacía necesario realizar análisis más completos que cubrieran todas las variables de decisión para la conexión de los proyectos. Las modificaciones a la NTSyCS recogieron estos nuevos desafíos, cambiando la forma de enfrentar la problemática vinculada a las nuevas conexiones. Hoy, la decisión de aprobar los puntos de conexión no solo tiene que cumplir con ciertos parámetros técnicos, sino que además debe cumplir con criterios económicos.

La NTSyCS fija plazo a los CDEC hasta fines del año 2015 para desarrollar el estudio para determinar los puntos óptimos de conexión al Sistema Troncal. No obstante el CDEC SIC ha decidido adelantar la definición de dichos puntos con el propósito de dar respuesta a un número importante de solicitudes de aprobación de puntos de conexión que han sido recibidas a la fecha.

El presente estudio refleja el análisis efectuado por la DPD para determinar las zonas óptimas de ubicación para conexión de nuevos desarrollos en puntos intermedios de líneas del Sistema de Transmisión Troncal del SIC, orientando de esta forma a los actuales y futuros desarrollos para proponer y definir soluciones técnicas y económicas que garanticen la eficiencia del sistema y el acceso abierto a las instalaciones del Sistema de Transmisión Troncal. Este análisis se enmarca dentro de las exigencias regulatorias establecidas en la NTSyCS de noviembre de 2014, en particular los artículos: 2-7 e), 3-24 y 10-18, incluyendo además las

¹ Como la restricción de no realizar más de una conexión en derivación en un circuito, independientemente de su ubicación.
modificaciones establecidas en el Artículo primero, literal C) de la Resolución Exenta 297, de fecha 8 de junio de 2015.
2 ANTECEDENTES

2.1 Tipos de Conexión al Sistema Troncal

Dentro de los tipos de conexión al Sistema Troncal existe una variedad de alternativas para cada uno de los desarrollos, las cuales poseen características que deben ser analizadas en su mérito por los promotores de proyectos y por el CDEC SIC. Las conexiones existentes en el sistema en la actualidad son las siguientes:

2.1.1 Conexión a una barra existente

La conexión a una barra existente es mostrada en la Figura 1. En este caso sólo se consideran limitaciones en aquellas barras que se encuentren bloqueadas por restricciones de espacio o acceso:

![Figura 1: Conexión a barra de subestación troncal existente](image)

2.1.2 Conexión en Derivación o Tap-off

La conexión en Derivación o Tap-off se muestra en la Figura 2. Dicha conexión se encuentra en las instalaciones existentes antes del cambio normativo y son posibles en aquellas declaradas en construcción antes del 31 de diciembre de 2014, o aquellas autorizadas provisionalmente por la DPD, en atención a la aplicación de la Resolución Exenta 297. La normalización de este tipo de conexiones para el primer caso será analizada en el contexto de la revisión anual del Estudio de Transmisión Troncal; mientras que para el segundo caso, dentro de los plazos establecidos en la misma Resolución Exenta.

![Figura 2: Conexión en Derivación o Tap-off](image)
2.1.3 Conexión en líneas en las cuales existe un Tap-off

La conexión a líneas en las cuales existe, o se encuentra en construcción un Tap-off, se muestra en la Figura 3. Al igual que en el caso anterior, está basada en la existencia de conexiones existentes permitidas por la antigua normativa, por aquellas declaradas en construcción antes del 31 de diciembre de 2014, o aquellas autorizadas provisoriamente de acuerdo con la Resolución Exenta 297. Para estas situaciones debe analizarse la conveniencia técnico-económica buscando la solución integral tanto para el proyecto nuevo (quien solicita la conexión), como para regularizar la instalación conectada en Tap-off.

![Figura 3: Conexión Tap-off existente](image)

2.1.4 Conexión seccionando línea simple circuito

La conexión seccionando una línea de simple circuito se muestra en la Figura 4. Este tipo de conexión es una alternativa posible para todas las instalaciones que proyecten conectarse a tramos del SIC cumpliendo las exigencias normativas vigentes y analizando la conveniencia técnico-económica de su ubicación.

![Figura 4: Conexión seccionando un circuito](image)

2.1.5 Conexión seccionando un circuito de una línea de doble circuito

El tipo de conexión seccionando sólo un circuito de una línea de doble circuito se aprecia en la Figura 5. Esta conexión es posible cuando los circuitos se encuentran a más de 1000 metros de distancia y se verifique la conveniencia técnico-económica. También es posible para proyectos que se hayan declarado en construcción antes del 31 de diciembre del año 2014.
2.1.6 Conexión seccionando ambos circuitos.
La conexión seccionando ambos circuitos de una línea de doble circuito se muestra en la Figura 6. Para estos casos se debe realizar una evaluación técnico-económica de la ubicación del punto de seccionamiento.

2.1.7 Conexión de múltiples proyectos en punto común
El caso de conexión de varios proyectos en un punto común seccionando una línea de transmisión troncal se muestra en la Figura 7. Para el punto de seccionamiento debe analizarse la conveniencia técnica-económica, en base a solicitudes y catastro de proyectos en construcción y desarrollo. Además, se requiere la coordinación de los desarrolladores, tanto en las características técnicas como en los plazos involucrados.
2.2 RESTRICCIONES EN EL STT ANTE CONEXIONES SIN COORDINACIÓN

Bases para el análisis de restricciones.

A continuación se presentan análisis que indican que al ejecutarse seccionamientos parciales de los circuitos que unan dos subestaciones troncales, se pueden generar reducciones de la capacidad de transmisión en el tramo en cuestión. Esta disminución de la capacidad de transmisión, en algunos casos podría activar restricciones de transmisión desacoplando económicamente al sistema interconectado, lo que afectaría al sistema en su conjunto, incluido el nuevo desarrollo. Esta situación se analizará en el proceso de evaluación de nuevos seccionamientos.

Considerando que el STT posee instalaciones de 220 kV y 500 kV y que sus líneas de transmisión poseen reactancias que son significativamente mayores que las resistencias, para el análisis se asume que sus impedancias pueden ser caracterizadas por sus reactancias sin incurrir en errores significativos. Es importante tener presente que el análisis debe considerar las transposiciones simétricas de las líneas, en atención a que deben cumplir con las exigencias normativas respecto de la calidad de suministro.

El análisis de la reactancia de líneas de transmisión nos proporciona información significativa en cuanto a las variables que influyen en la determinación de su valor. Es así como, en general, podemos distinguir líneas de simple circuito con disposición vertical, triangular y horizontal, y también líneas de doble circuito con disposición vertical y horizontal; no descartando que se puedan presentar, en casos especiales, otros tipos de configuraciones.

En general, las líneas de 220 kV con mayor presencia en el SIC, tanto en simple como en doble circuito poseen conductor mínimo del tipo Flint (25 mm de diámetro), para las distintas configuraciones espaciales de conductores, poseen aproximadamente las siguientes reactancias por unidad de longitud para distancias típicas entre conductores.

- **Triangular**: 0,4169 [Ω/km]
- **Horizontal**: 0,4286 [Ω/km]
- **Vertical**: 0,4066 [Ω/km]

Comparando los valores extremos, se llega a una diferencia de 5,4% (tomando como referencia el valor mínimo de las reactancias anteriores) en la impedancia, con lo cual la relación entre las corrientes de circuitos en paralelo de igual longitud sería cercana al 95%, lo que se puede considerar prácticamente igual para efectos del análisis.

Un análisis considerando un cambio de conductor para un mismo tipo de estructura (misma disposición espacial), asumiendo el conductor mínimo como base y aumentándolo en 25% en su sección, nos arroja:

- **Conductor base**: 0,4169 [Ω/km]
- **Conductor aumentado**: 0,4077 [Ω/km]
Comparando los valores, se llega a una diferencia de 2,26% (base valor mínimo) en la impedancia, con lo cual la relación entre las corrientes de circuitos en paralelo de igual longitud sería cercana al 98%, lo que se puede considerar prácticamente igual para efectos del análisis.

En consideración a lo anterior, si se analiza la configuración de un conductor por fase, se puede considerar (sin pérdida de generalidad), que tanto la sección del conductor como la disposición espacial de los conductores en el circuito, no tendría un efecto significativo en el valor de la reactancia y pueden considerarse iguales para efectos de repartición de corrientes entre circuitos paralelos; quedando por analizar la longitud de cada uno de los circuitos como variable diferenciadora en el resultado de las reparticiones.

En general, las longitudes de los tramos paralelos en líneas de 220 kV del STT son similares, en atención a que se trata de líneas de doble circuito, y en aquellos casos de líneas en estructuras separadas, la diferencia de longitud no alcanza al 5%, por lo que se puede concluir finalmente que no existiría una diferencia significativa entre los circuitos y la repartición de corrientes puede considerarse igual.

En el caso de 500 kV, la situación es diferente para aquellos tramos que poseen circuitos en diferentes estructuras, ya que la cantidad de conductores por fase podría ser diferente y por ende variar significativamente su reactancia. Sin embargo, para estos casos se utiliza compensación serie, la cual equipara las impedancias (reactancias) equivalentes de los circuitos, haciendo que dichos circuitos se presenten como de igual reactancia, distribuyendo los flujos de forma similar. Por lo anterior, el sistema de 500 kV no es analizado en cuanto a su distribución de flujos.

De acuerdo con las consideraciones anteriores, asumiendo que en general las reactancias de circuitos paralelos son similares, se puede analizar el efecto de realizar un seccionamiento intermedio, con la posibilidad de incorporar inyección o retiro de energía en dicho punto, lo que se desarrolla a continuación.

2.2.1 Restricción de transmisión por conexión a 1 de 2 circuitos

Esta condición ocurre cuando se tienen 2 circuitos que conectan dos subestaciones troncales y una planta está conectada a 1 circuito o un desarrolló proyecta conectarse a 1 de los 2 circuitos, en consideración a la declaración en construcción antes del 31 de diciembre de 2014, o por existir una separación entre circuitos mayor que 1000 metros.

Cada uno de los casos mencionados anteriormente posee características diferentes y deben analizarse en forma separada.

En el caso de conexión con seccionamiento, la condición de operación considerando contingencia simple (N-1) implica restringir la capacidad de transmisión al circuito de menor capacidad. Luego esto no se diferencia del caso previo a la conexión del seccionamiento. Por lo tanto, no existe impacto alguno en la capacidad de transmisión y en estos casos sólo debe revisarse la conveniencia económica del punto de seccionamiento.
En el caso de conexiones en Tap-off, se produce un efecto en la capacidad de transmisión del tramo pre-contingencia, debido a que la generación conectada en Tap-off a uno de los circuitos se pierde en la contingencia que afecta al mismo circuito, tal como se muestra en la Figura 8. Lo anterior naturalmente impone un límite a la máxima pérdida de generación que puede soportar el sistema sin riesgo para la seguridad. Es necesario tener presente que la capacidad del tramo no dependerá del punto de conexión ya que el límite viene dado por la condición post contingencia, la que considerará entre sus factores la ubicación de la reserva primaria y secundaria.

Para el caso de la conexión en Tap-off se muestra a continuación las relaciones entre las capacidades de ambos circuitos. Para el ejemplo se asume como base la capacidad de transmisión del circuito de menor potencia. Las curvas muestran la restricción de capacidad cuando el Tap-off se conecta al circuito de menor potencia y al de mayor potencia, asumiendo que la reserva se encuentra en el extremo de la carga. Se deduce directamente que para obtener una mayor capacidad de transmisión en el tramo, la conexión en Tap-off debe estar en el circuito de mayor potencia tal como se muestra en la Figura 9.

Figura 8: Conexión en derivación uno de dos circuitos
2.2.2 Restricción de transmisión por seccionamiento de 1 de 3 circuitos

Esta condición se presenta cuando se tienen 3 circuitos que conectan dos subestaciones troncales y un proyecto de generación pretende conectarse al STT seccionando 1 de los 3 circuitos. Esta condición sería permitida en la norma si la distancia entre el circuito a seccionar y los restantes es de más de 1.000 metros y la DPD aprueba la conexión. La restricción que genera este tipo de conexión al STT se muestra en la Figura 10.
2.2.3 Restricción de transmisión por seccionamiento de 2 de 3 circuitos

Esta condición se presenta cuando se tienen 3 circuitos que conectan dos subestaciones troncales y un proyecto de subestación pretende seccionar 2 de los 3 circuitos. La restricción que genera este tipo de conexión al STT se muestra en la Figura 11.

![Diag1](seccionamiento.png)

Figura 11: Conexión subestación seccionadora dos de tres circuitos

2.2.4 Restricción de transmisión por seccionamiento de 2 de 3 circuitos

Esta condición se presenta cuando se tienen 3 circuitos que conectan dos subestaciones troncales y un proyecto de generación pretende conectarse al STT seccionando 2 de los 3 circuitos. Esta condición sería permitida en la norma independientemente de la distancia entre los circuitos a seccionar. La restricción que genera este tipo de conexión al STT se muestra en la Figura 12.
2.2.5 Restricción de transmisión por seccionamiento simultáneo simple y doble de 3 circuitos

Esta condición se presenta cuando se tienen 3 circuitos que conectan dos subestaciones troncales y dos proyectos de generación pretenden realizar seccionamientos de 1 de 3 circuitos y otro de 2 de 3 circuitos. La configuración y la restricción que genera este tipo de conexión al STT se muestra en la Figura 13.
Como se ha mostrado en las figuras anteriores, el seccionamiento desequilibrado del sistema siempre reduce la capacidad de trasmisión del tramo, pero su efecto sólo se hará evidente cuando los flujos por los tramos alcancen valores por sobre su capacidad post contingencia, provocando desacoples del sistema, los que deben ser analizados en su mérito.
3 DESARROLLO

3.1 Generalidades

Con la nueva versión de la NTSyCS, el CDEC tiene las facultades para evaluar y aprobar cada punto de conexión intermedio en tramos del sistema troncal, considerando aspectos técnicos y económicos de modo que resulten óptimos. Los aspectos que se han identificado para el análisis son:

- Valor de Inversión de las alternativas para la conexión
- Restricciones de transmisión y reducción de capacidad
- Condiciones de acceso abierto post-conexión
- Conjunto de proyectos en desarrollo, sus estados de avance y potenciales en una zona de conexión
- Capacidad de acceso a barras existentes o en desarrollo
- Plazo para el desarrollo de una solución de conexión

3.2 Metodología para Definición de Área de Conexión Óptima

Para la definición de las áreas de conexión óptima se aplica la siguiente metodología:

- **Recoger información**: a partir del Catastro de Proyectos se recoge información de nuevos proyectos en desarrollo que proponen conectarse en alguna zona o tramo del STT. La información debe incluir:
 - Ubicación
 - Potencia
 - Distancia a SS/EE troncales existentes
 - Tecnología
 - Topología de conexión (propuesta de interesado)
 - Instalación de terceros involucradas y relación con sus propietarios
 - Estado de avance de los proyectos

- **Identificar opciones de conexión**: Se generan opciones de conexión y/u opciones de seccionamiento en función de:
 - Proyectos en desarrollo
 - Potencial de recursos en la zona
 - Obras de transmisión en proyecto
• **Analizar alternativas:** Para cada tramo del STT se comparan las opciones posibles considerando los criterios descritos en la sección 3.3.

3.3 Criterios para Definición de Área de Conexión Óptima

El área de conexión óptima o la zona donde el CDEC aprueba la conexión de nuevos proyectos se determinará en función de criterios económicos, de capacidad de transmisión y de posibilidades de desarrollo en la zona de conexión:

- **Criterios económicos:** se evalúa el costo que significa la conexión para el sistema troncal versus el costo que tendría para el desarrollador. Por ejemplo, si un desarrollador solicita acceso a una línea perteneciente al STT para conectarse mediante un seccionamiento, se compara el valor de construcción de la subestación seccionadora versus el costo que tendría para el interesado el construir una línea hacia una subestación existente. Si el costo de la línea es inferior al de la subestación seccionadora, el interesado deberá conectarse en la subestación existente. Las Figura 14, Figura 15 y Figura 16 muestran la comparación económica cuando la línea de conexión del Interesado es de un circuito.

![Figura 14: Seccionamiento de 1 circuito en 220 kV – Línea de conexión de 1 circuito](image-url)
Figura 15: Seccionamiento de 2 circuitos en 220 kV – Línea de conexión de 1 circuito
Determinación de puntos de conexión al STT – 01 de julio 2015

Seccionamiento 3 circuitos en 220 kV

Sin perjuicio de lo anterior, para el caso que el Interesado requiera de una línea de conexión de doble circuito, la comparación para seccionar al menos dos circuitos de una línea troncal respecto del costo de la línea de conexión se muestra en la Figura 17.

Asimismo, la comparación económica para una línea de conexión de doble circuito que secciona tres circuitos troncales, se muestra en la Figura 18.

Cabe destacar que la conexión en doble circuito se justifica debido a una longitud significativa de la línea de conexión al STT y/o la criticidad de la salida intempestiva de la central es significativa para el sistema, esto último, demostrado mediante estudios sistémicos.
Determinación de puntos de conexión al STT – 01 de julio 2015

Seccionamiento 2 circuitos en 220 kV

Costo de Inversión:
- Palos: MMU$ 9.7
- Barras y adicionales: MMU$ 1.5
- Terreno: MMU$ 1
- SSAA: MMU$ 1.5
Total: MMU$ 13.7

Costo de Inversión:
- Palos: MMU$ 3.0
- Línea ≥ 500 MVA: MMU$ 10.5 (0.5 MMU$/km)
- Terreno y adicionales: MMU$ 0.2
- (Supuesto uso de SSAA existentes)
Total: MMU$ 13.7

Conclusiones:
- Seccionamiento a menos de 21 km de la barra B no es eficiente
- Sujeto a análisis de impacto por seccionamiento

Figura 17: Seccionamiento de 2 circuitos en 220 kV – Línea de conexión de 2 circuitos
Criterios de capacidad de transmisión (limitación operativa): la conexión no debe generar reducción de capacidad de transmisión en el tramo. En caso que sí lo haga, se evaluarán otras opciones de conexión. Por ejemplo, si un desarrollador proyecta conectarse en un tramo donde existen tres circuitos, y la normativa le indica que a lo menos debe seccionar dos, si dicha conexión (seccionando dos circuitos) genera una reducción en la capacidad de transmisión, el desarrollador deberá considerar el seccionamiento completo del tramo.

Posibilidad de desarrollo: si de acuerdo al Catastro de Proyectos en una zona existen proyectos en desarrollo, se evalúa un punto óptimo para la conexión conjunta mediante una subestación seccionadora.
3.4 Análisis de cumplimiento Artículo 3-22

El Artículo 3-22 indica que los seccionamientos realizados a líneas del STT deben poseer las transposiciones necesarias de tal modo que no se produzcan los desequilibrios que desmejoren la calidad de servicio. En este sentido, la incorporación de estructuras de transposición involucra costos adicionales a la subestación de seccionamiento, los que deben ser evaluados para la determinación del punto óptimo de seccionamiento.

Asumiendo que los tramos resultantes de haber seccionado una línea o circuito quedan completamente desequilibrados, la corrección de ambos tramos podría considerar la instalación de 6 estructuras de transposición con todos los costos asociados. Se estima que tal instalación para el caso de líneas de doble circuito de 220 kV representaría aproximadamente MMUS$ 1,2, lo que para efectos de calcular equivalentes de longitud, representaría aproximadamente 3 km de línea 2x220 kV, lo que no representa una distancia significativa.

En virtud de lo anterior, la equivalencia de seccionamientos con líneas independientes no se vería afectada por la incorporación o no de las transposiciones, por lo que para efectos de este estudio, dichos costos no se considerarán.
4 APLICACIÓN DE METODOLOGÍA A TRAMOS DEL SISTEMA DE TRANSMISIÓN TRONCAL DEL SIC

De acuerdo con la metodología desarrollada en el presente informe, se presenta a continuación la propuesta para los tramos del Sistema de Transmisión Troncal, identificando la ubicación de las zonas óptimas de acuerdo con los proyectos catastrados. Para efectos de los análisis de cada tramo, para los esquemas gráficos se usará la siguiente simbología:

SIMBOLOGÍA

: Área seccionamiento proyectado
.: Proyecto en fase de ingeniería sin RCA
: Proyecto declarado en construcción
: Proyecto en evaluación ambiental
: Proyecto con RCA
: Punto de conexión propuesto por desarrollador
: Proyecto de retiro
: Modificación de línea producto de seccionamiento proyectado

4.1 Tramo 220 kV Diego de Almagro – Cardones 220 kV

4.1.1 Esquema gráfico

El tramo y los proyectos en desarrollo catastrados en éste se muestran en la Figura 19.

Figura 19: Tramo Diego de Almagro – Cardones 220 kV
Para el análisis deben considerarse las condiciones técnicas y económicas óptimas para las zonas de conexión, considerando los seccionamientos completos (3 circuitos) en las barras Carrera Pinto y San Andrés actual o futura.

4.1.2 Tramo Diego de Almagro – Carrera Pinto

4.1.2.1 Consideraciones seccionamiento uno o dos circuitos
Este tramo posee una zona donde los circuitos se encuentran a más de 1 km, el que se ubica aproximadamente entre 25 km y 30 km de Carrera Pinto; luego, en general se considera que el seccionamiento debe ser de dos circuitos al menos y en caso de presentarse un proyecto en la zona indicada, se deberá estudiar en consideración de sus antecedentes particulares.

4.1.2.2 Distancia entre puntos de conexión
En cuanto a la distancia mínima de seccionamiento (doble) desde una barra existente, se considera 40 km, los cuales para el tramo estudiado de 72,3 km, podría ser aproximado a 36 o 37 km. En este sentido, se justificaría un seccionamiento en el centro del tramo para los proyectos catastrados en la zona.

4.1.2.3 Proyectos catastrados
Los proyectos catastrados para el tramo en cuestión son:

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Potencia [MW]</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV Solar Andino</td>
<td>150</td>
<td>Carrera Pinto</td>
<td>5</td>
</tr>
<tr>
<td>PV Luz de Oro</td>
<td>250</td>
<td>Diego de Almagro</td>
<td>20</td>
</tr>
<tr>
<td>PV Diego de Almagro-Pedernales</td>
<td>162</td>
<td>Diego de Almagro</td>
<td>10</td>
</tr>
<tr>
<td>Consumo Inca de Oro</td>
<td>50</td>
<td>Carrera Pinto</td>
<td>28</td>
</tr>
</tbody>
</table>

De estos proyectos, sólo el consumo de Inca de Oro posee RCA favorable desde julio de 2009 y la PV Diego de Almagro – Pedernales posee RCA favorable pero con conexión directa a la S/E Diego de Almagro.

Considerando que los proyectos de generación presentados no se encuentran en áreas óptimas de seccionamiento, deben aplicarse los criterios técnico-económicos indicados en este informe y otras consideraciones específicas que pudiesen presentarse en este tramo, para evaluar un punto óptimo de conexión. En el caso del retiro, que se encuentra en la zona de separación mayor que 1 km entre circuitos, deberá estudiarse su seccionamiento.
4.1.2.4 Proyectos de Transmisión

En la actualidad el Plan de Expansión de la CNE 2014-2015 considera la construcción de una nueva subestación Diego de Almagro, aproximadamente a 10 km de la actual S/E Diego de Almagro para permitir el apoyo a la zona, en atención a que la actual S/E Diego de Almagro quedará sin capacidad de conectar nuevas instalaciones. Así, no se justificaría la construcción de otra subestación en las inmediaciones de este nuevo desarrollo.

4.1.2.5 Flujos por tramo

Tal como fuera mencionado en la sección 2.2, los flujos por el tramo analizado pueden verse afectados si el seccionamiento reduce la capacidad de transmisión del tramo a niveles donde se provoca congestión. Para tener en cuenta estos factores, se ha considerado como base revisar los flujos por tramo de la revisión del Estudio de Transmisión Troncal del año 2014, los que para el tramo en cuestión muestran la siguiente característica:

Como se puede apreciar, cualquier seccionamiento en el medio del tramo Diego de Almagro – Carrera Pinto reduciría la capacidad del tramo a 510 MVA cuando se realice el aumento de capacidad del antiguo circuito. Si a lo anterior se suma la inyección de potencia en el punto de seccionamiento, la capacidad del sistema completo disminuirá aún más y, en el caso de considerar inyecciones por 200 MW, la capacidad del tramo sería reducida aproximadamente a 490 MVA.

En atención a que los valores mencionados pueden afectar la operación económica del sistema, se requiere un análisis más detallado de los efectos económicos para el tramo en cuestión.
4.1.2.6 Definición de zonas de conexión

De acuerdo con los análisis de los puntos anteriores según requerimientos podrá definirse a futuro:

- Zona de seccionamiento en un punto intermedio del tramo Diego de Almagro – Carrera Pinto para seccionamiento simple o múltiple.

4.1.2.7 Asignación de zonas de conexión a proyectos catastrados

De acuerdo con las consideraciones de los puntos anteriores, para los proyectos presentados se tienen las siguientes alternativas:

- PV Diego de Almagro – Pedernales y PV Luz de Oro, tendrán como alternativas de conexión la Nueva S/E Diego de Almagro o una S/E Seccionadora en un punto intermedio del tramo Diego de Almagro – Carrera Pinto.
- El Retiro de Inca de Oro tendrá como alternativa conectarse a la S/E seccionadora en el punto intermedio o podrá desarrollar provisionalmente su conexión seccionando el circuito independiente en el punto de su desarrollo, posteriormente se deberá evaluar el seccionamiento múltiple en dicha ubicación.
- El PV Solar Andino, por su ubicación, tendrá como alternativa de conexión la S/E Carrera Pinto o la nueva S/E seccionadora en el centro del tramo, indicada en el punto precedente.

Para el desarrollo de las SS/EE seccionadoras, los interesados en conectarse a ellas deberán acordar el punto de seccionamiento dentro de la zona óptima definida.

4.1.3 Tramo Carrera Pinto – Zona San Andrés

4.1.3.1 Consideraciones seccionamiento uno o dos circuitos

Este tramo no posee zonas donde los circuitos se encuentran a más de 1 km; luego, se considera que el seccionamiento debe ser de al menos dos circuitos.

4.1.3.2 Distancia entre puntos de conexión

En cuanto a la distancia mínima de seccionamiento (doble) desde una barra existente, se considera 40 km; luego, por la longitud del tramo no se justificaría un seccionamiento para proyectos, por lo que todos los proyectos deberán conectarse a las barras existentes.

4.1.3.3 Proyectos catastrados

Hasta la fecha no existen proyectos catastrados para el tramo.

4.1.3.4 Proyectos de Transmisión

En la actualidad no existen proyectos de transmisión para el tramo.
4.1.3.5 Flujos por tramo
En atención a que no existen proyectos catastrados entre las SS/EE Carrera Pinto y Zona San Andrés, no se realiza el análisis de flujos por tramo.

4.1.3.6 Definición de zonas de conexión
Debido a la longitud del tramo considerado, no se justifican nuevas zonas de conexión.

4.1.3.7 Asignación de zonas de conexión a proyectos catastrados
De acuerdo con las consideraciones de los puntos anteriores, cualquier proyecto futuro deberá conectarse a las barras Carrera Pinto o Zona San Andrés.

4.1.4 Tramo Zona San Andrés - Cardones
4.1.4.1 Consideraciones seccionamiento uno o dos circuitos
Este tramo posee una zona donde los circuitos se encuentran a más de 1 km, la cual corresponde a la zona urbana del cruce de Copiapó, aproximadamente entre 12 y 15 km de Cardones. Luego, considerando que el seccionamiento de un circuito sólo se justificaría a distancias mayores a 15 km, se considera que cualquier seccionamiento debe ser de dos circuitos al menos.

4.1.4.2 Distancia entre puntos de conexión
Como la distancia mínima de seccionamiento (doble) desde una barra existente se considera de 40 km, la longitud del tramo no justificaría un seccionamiento para la conexión de nuevos proyectos, por lo que todos los nuevos desarrollos deberán conectarse a las barras existentes.

4.1.4.3 Proyectos catastrados
A la fecha no existen proyectos catastrados para el tramo.

4.1.4.4 Proyectos de Transmisión
En la actualidad no existen proyectos de transmisión para el tramo.

4.1.4.5 Flujos por tramo
En atención a que no existen proyectos catastrados en el tramo, no se realiza el análisis de flujos por tramo.

4.1.4.6 Definición de zonas de conexión
Debido a la longitud del tramo considerado, no se justifican nuevas zonas de conexión.

4.1.4.7 Asignación de zonas de conexión a proyectos catastrados
De acuerdo con las consideraciones de los puntos anteriores, cualquier proyecto futuro deberá conectarse a las barras Carrera Pinto o Zona San Andrés.
4.2 Tramo Cardones – Maitencillo 220 kV

4.2.1 Esquema gráfico

El tramo y los proyectos en desarrollo catastrados en éste se muestran en la Figura 21.

![Figura 21: Tramo Cardones – Maitencillo 220 kV](image)

4.2.2 Consideraciones seccionamiento uno o dos circuitos

Este tramo posee cuatro zonas donde los circuitos se encuentran a más de 1 km, los que se ubican aproximadamente entre 6 km y 9 km desde Cardones, 23 y 29 km desde Cardones, 52 y 66 km desde Cardones y entre 91 y 112 km desde Cardones; luego, con excepción de la primera zona, en las restantes se pueden estudiar los seccionamientos simples.

4.2.3 Distancia entre puntos de conexión

Dado que la distancia mínima de seccionamiento (doble) desde una barra existente se considera de 40 km; la longitud de 132 km del tramo justificaría dos seccionamientos, los que por la simetría de optimización deberían quedar ubicados en los kilómetros 44 y 88 desde Cardones.

4.2.4 Proyectos catastrados

Los proyectos catastrados para el tramo en cuestión son:

- Desierto de Atacama 120 MW a 59 km de S/E Cardones
- Buenos Vientos 300 MW a 60 km de S/E Cardones
- El Sol de Villanueva 150/123 MW 55 km de S/E Maitencillo
- Villalanda 33,6+33,6 MW a 48 km de S/E Maitencillo
- Vallesolar 70 MW a 46 km de S/E Maitencillo
- Estancia Délano 100 MW 36 km de S/E Maitencillo
- Tamarico 150 MW a 19 km de S/E Maitencillo
- Estudio Délano 100 MW 36 km de S/E Maitencillo
- Valleland 33,6+33,6 MW a 48 km de S/E Maitencillo
- El Sol de Vallenar 150/123 MW 55 km de S/E Maitencillo
- 60 km
- 46 km
- 26 km
- 132 km
- Cardones
- Maitencillo
De estos proyectos, sólo el proyecto Valleland se encuentra en construcción, mientras que el proyecto Desierto de Atacama posee RCA favorable.

De acuerdo con lo anterior, los proyectos de generación presentados Vallesolar, Valleland y Sol de Vallenar se encuentran cercanos a un área óptima de seccionamiento, por lo que considerando el desarrollo de los proyectos, dicha zona podría moverse hacia el norte quedando como punto óptimo la zona cercana a los kilómetros 82-84 desde Cardones.

Por otra parte, los proyectos más cercanos a la barra Cardones; es decir, Buenos Vientos y Desierto de Atacama, se encuentran en la misma zona, la que podría justificar el desplazamiento de la zona óptima cercana a la barra Cardones; además de lo anterior dicha zona coincide con la zona de análisis de seccionamiento de un circuito.

Para el caso del proyecto Tamarico, éste se encuentra fuera de la zona de distancia considerada para seccionamiento simple, por lo que sólo tendría la opción de conectarse a la zona óptima cercana a Maitencillo o directamente a la barra Maitencillo o alguna línea de subtransmisión o adicional; mientras que el proyecto Estancia Délano, aun cuando se encuentra en un área de análisis de seccionamiento simple, quedaría más cercano al área óptima de seccionamiento sur (cercana a Maitencillo).

4.2.5 Proyectos de transmisión

En la actualidad los proyectos de transmisión para la zona corresponden a las subestaciones Nueva Maitencillo y Nueva Cardones que se encuentra desarrollando la empresa Interconexión Eléctrica S.A., las cuales deberían estar operativas el año 2018. Estas subestaciones servirían como puntos posibles de conexión para futuros desarrollos, razón por la cual no existirían análisis adicionales para la determinación de las zonas óptimas de seccionamiento.

4.2.6 Flujos por tramo

Tal como fuera mencionado en la sección 2.2 los flujos por el tramo analizado pueden verse afectados si el seccionamiento reduce la capacidad de transmisión del tramo a niveles donde se provoca congestión. Para tener en cuenta estos factores, se ha considerado como base
revisar los flujos por tramo de la Revisión del Estudio de Transmisión Troncal del año 2014, los que para el tramo en cuestión muestran la siguiente característica:

![Flujos tramo Cardones – Maitencillo 220 kV](Figura 22: Flujos tramo Cardones – Maitencillo 220 kV)

Para este tramo en particular se puede apreciar que los flujos sur-norte se encuentran restringidos, con claros desacoplos hasta el año 2018, fecha en que entraría en operación el sistema de 500 kV al norte de Polpaico. Si bien los proyectos ERNC del tramo analizado tienen efecto de inyectar su energía en dirección contraria, las horas en las cuales se produce la restricción del tramo no coinciden con la existencia de generación ERNC. Por lo anterior, los seccionamientos dobles reducirían la capacidad de transmisión del tramo a valores cercanos a 340 MVA (en la actualidad poseen 400 MVA)

En atención a que los valores mencionados pueden afectar la operación económica del sistema, se requiere un análisis más detallado de los efectos económicos para el tramo en cuestión para evaluar la conveniencia del seccionamiento triple como compensación a las restricciones operacionales.

4.2.7 Definición de zonas de conexión

De acuerdo con los análisis de los puntos anteriores se proponen las siguientes zonas de seccionamiento:

- Zona en el km 60 del tramo Cardones – Maitencillo para seccionamiento doble.
- Zona en el km 86 del tramo Cardones - Maitencillo para seccionamiento doble.

4.2.8 Asignación de zonas de conexión a proyectos catastrados

De acuerdo con las consideraciones de los puntos anteriores, para los proyectos presentados se tienen las siguientes alternativas:
• PV Desierto de Atacama y PE Buenos Vientos, tendrán como alternativas de conexión la S/E Cardones o Nueva Cardones, una S/E Seccionadora en el km 60 del tramo Cardones – Maitencillo o una S/E Seccionadora en el km 86 del mismo tramo.
• PV Valleland, dada su declaración en construcción antes del 31 de diciembre del año 2014, su conexión como derivación del circuito simple está aceptada debiendo regularizarse posteriormente con las revisiones anuales del ETT que realizará el CDEC.
• PV Vallesolar, PV Sol de Vallenar, PV Estancia Délano y PV Tamarico, sus alternativas de conexión son las SS/EE seccionadoras en el km 60 o km 86 del tramo Cardones – Maitencillo o en la misma S/E Maitencillo o Nueva Maitencillo una vez que esté en operación.

Para el desarrollo de las SS/EE seccionadoras los interesados en conectarse a ellas deberán acordar el punto de seccionamiento dentro de la zona óptima definida.

4.3 Tramo Maitencillo – Punta Colorada 220 kV

4.3.1 Esquema gráfico

El tramo y los proyectos en desarrollo catastrados en éste se muestran en la Figura 23:

![Figura 23: Tramo Maitencillo – Punta Colorada 220 kV](image)

4.3.2 Consideraciones seccionamiento uno o dos circuitos

Este tramo corresponde a una línea de doble circuito en toda su extensión, razón por la cual no existe posibilidad de seccionar uno de los circuitos.
4.3.3 Distancia entre puntos de conexión

Como la distancia mínima de seccionamiento (doble) desde una barra existente se considera de 40 km, la longitud del tramo de 109 km justificaría dos seccionamientos para la conexión de nuevos proyectos, los que por la simetría de optimización deberían quedar ubicados en los kilómetros 36 y 73 desde Maitencillo a Punta Colorada.

4.3.4 Proyectos catastrados

Los proyectos catastrados para el tramo en cuestión son:

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Potencia [MW]</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV El Pelicano</td>
<td>100</td>
<td>Pta. Colorada</td>
<td>31</td>
</tr>
<tr>
<td>PV El Romero</td>
<td>196</td>
<td>Pta. Colorada</td>
<td>34</td>
</tr>
<tr>
<td>PV Abasol</td>
<td>61,5</td>
<td>Maitencillo</td>
<td>13</td>
</tr>
<tr>
<td>PV Domeyko</td>
<td>60</td>
<td>Maitencillo</td>
<td>41</td>
</tr>
</tbody>
</table>

De estos proyectos, el proyecto PV El Pelicano se encuentra en construcción mientras que los proyectos PV Abasol y PV El Romero poseen RCA favorable.

De acuerdo con lo anterior, los proyectos de generación presentados PV El Pelicano y PV El Romero se encuentran cercanos a un área óptima de seccionamiento, por lo que considerando el desarrollo de los proyectos, dicha zona podría moverse hacia el sur quedando como punto óptimo cercano al kilómetro 31-34 desde Punta Colorada.

Por otra parte, el proyecto más cercano a la barra Maitencillo; es decir, PV Abasol, por su condición de disponer de RCA favorable y en consideración que la S/E Maitencillo no tiene posibilidad de Acceso, tendría como alternativa especial una conexión provisoria en tap off, en atención a lo indicado en la Resolución Exenta 297, en función de la fecha de puesta en servicio de la S/E Nueva Maitencillo y el proyecto Abasol.

Para el caso del proyecto PV Domeyko, éste se encontraría cercano a la zona de distancia considerada óptima.

4.3.5 Proyectos de transmisión

En la actualidad los proyectos de transmisión para la zona corresponden a la subestación Nueva Maitencillo desarrollada por la empresa Interconexión Eléctrica S.A., la cual debería estar operativa el año 2018. Esta subestación serviría como punto posible de conexión para futuros desarrollos, razón por la cual no existirían análisis adicionales para la determinación de las zonas óptimas de seccionamiento.
4.3.6 Flujos por tramo

En atención que los seccionamientos probables corresponden a desarrollos que involucran los dos circuitos, no se produciría detrimento de la capacidad de transmisión por el tramo, razón por la cual los flujos no son una variable para el análisis.

4.3.7 Definición de zonas de conexión

De acuerdo con los análisis de los puntos anteriores se proponen las siguientes zonas de seccionamiento:

- Zona en el km 40 del tramo Maitencillo – Punta Colorada para seccionamiento doble.
- Zona en el km 77 del tramo Maitencillo – Punta Colorada para seccionamiento doble.

4.3.8 Asignación de zonas de conexión a proyectos catastrados

De acuerdo con las consideraciones de los puntos anteriores, para los proyectos presentados se tienen las siguientes alternativas:

- PV Abasol, tendrá como alternativas de conexión la S/E Nueva Maitencillo, una conexión en derivación a un circuito en el km 13 del tramo Maitencillo – Punta Colorada o una S/E Seccionadora en el km 40 del mismo tramo.
- PV Domeyko, dada su ubicación dentro del área óptima tendrá como alternativas de conexión la S/E Nueva Maitencillo, S/E seccionadora km 40 o km 76 del tramo Maitencillo – Punta Colorada.
- PV El Pelícano y PV El Romero, sus alternativas de conexión son las SS/EE seccionadoras en el km 76 o km 40 del tramo Maitencillo – Punta Colorada, o en la misma S/E Punta Colorada.

Para el desarrollo de las SS/EE seccionadoras los interesados en conectarse a ellas deberán acordar el punto de seccionamiento dentro de la zona óptima definida.

4.4 Tramo Punta Colorada – Pan de Azúcar 220 kV

4.4.1 Esquema gráfico

El tramo y los proyectos en desarrollo catastrados en éste se muestran en la Figura 24
4.4.2 Consideraciones seccionamiento uno o dos circuitos

Este tramo corresponde a una línea de doble circuito en toda su extensión, razón por la cual no existe posibilidad de seccionar uno de los circuitos.

4.4.3 Distancia entre puntos de conexión

Dado que la distancia mínima de seccionamiento (doble) desde una barra existente, se considera de 40 km; y que la longitud del tramo es de 76,3 km, por su aproximación al doble de la distancia mínima, se justificaría un seccionamiento para proyectos, los que por la simetría de optimización deberían quedar en el centro del tramo Punta Colorada – Pan de Azúcar; es decir en el km 38.

4.4.4 Proyectos catastrados

Los proyectos catastrados para el tramo en cuestión son:

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Potencia [MW]</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo Dominga</td>
<td>195</td>
<td>Punta Colorada</td>
<td>13</td>
</tr>
</tbody>
</table>

De acuerdo con lo anterior, el proyecto presentado Dominga se encuentra alejado del área óptima de seccionamiento.
4.4.5 Proyectos de transmisión
En la actualidad los proyectos de transmisión para la zona consideran la subestación Nueva Pan de Azúcar desarrollada por la empresa Interconexión Eléctrica S.A., la cual debería estar operativa el año 2018. Esta subestación serviría como punto posible de conexión para futuros desarrollos, razón por la cual no existirían análisis adicionales para la determinación de las zonas óptimas de seccionamiento.

4.4.6 Flujos por tramo
En atención que los seccionamientos probable corresponden a desarrollos que involucran los dos circuitos, no se produciría detrimento de la capacidad de transmisión por el tramo, razón por la cual los flujos no son una variable para el análisis.

4.4.7 Definición de zonas de conexión
De acuerdo con los análisis de los puntos anteriores se propone la siguiente zona de seccionamiento:

- Zona en el km 38 del tramo Punta Colorada – Pan de Azúcar para seccionamiento doble.

4.4.8 Asignación de zonas de conexión a proyectos catastrados
De acuerdo con las consideraciones de los puntos anteriores, para el proyecto presentado se tienen las siguientes alternativas:

- Proyecto consumo Dominga tendrá como alternativas de conexión la S/E Punta Colorada o la S/E Seccionadora en el km 38 del tramo Punta Colorada – Pan de Azúcar.
4.5 Tramo Pan de Azúcar – Las Palmas 220 kV

4.5.1 Esquema gráfico

El tramo y los proyectos en desarrollo catastrados en éste se muestran en la Figura 25:

![Esquema gráfico del tramo Pan de Azúcar – Las Palmas 220 kV](image)

4.5.2 Consideraciones seccionamiento uno o dos circuitos

Este tramo corresponde a una línea de doble circuito en toda su extensión, razón por la cual no existe posibilidad de seccionar uno de los circuitos.

4.5.3 Distancia entre puntos de conexión

Dado que la distancia mínima de seccionamiento (doble) desde una barra existente, se considera de 40 km; y que la longitud del tramo es de 154 km, por su aproximación a cuatro veces la distancia mínima, se justificarían tres seccionamiento para proyectos, los que por la simetría de optimización deberían quedar en un cuarto, el centro y tres cuartos del tramo Pan de Azúcar – Las Palmas, es decir, en los kilómetros 38, 77 y 115.

4.5.4 Proyectos catastrados

Los proyectos catastrados para el tramo en cuestión son:

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Potencia [MW]</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punta Sierra</td>
<td>76,8</td>
<td>Las Palmas</td>
<td>17,3</td>
</tr>
<tr>
<td>PE Talinay Poniente</td>
<td>60,8</td>
<td>Las Palmas</td>
<td>47,3</td>
</tr>
<tr>
<td>PE Camarico</td>
<td>39</td>
<td>Las Palmas</td>
<td>19,6</td>
</tr>
<tr>
<td>PE La Gorgonia</td>
<td>40</td>
<td>Las Palmas</td>
<td>20,3</td>
</tr>
</tbody>
</table>
De acuerdo con lo anterior, de los proyectos catastrados, no existe coincidencia de su ubicación con las zonas óptimas.

Además de lo anterior, es necesario tener en consideración que en el tramo existen conexiones en derivación y seccionamientos de sólo un circuito, los cuales pueden servir como puntos factibles de conexión o considerarse para su traslado con el propósito de regularizar las instalaciones troncales, aprovechando el análisis para la conexión de los proyectos catastrados, dichos proyectos son:

4.5.5 Proyectos de transmisión
En la actualidad los proyectos de transmisión para la zona corresponden a la nueva subestación Nueva Pan de Azúcar desarrollada por la empresa Interconexión Eléctrica S.A., la cual debería estar operativa el año 2018. Esta subestación serviría como punto posible de conexión para futuros desarrollos, razón por la cual no existirían análisis adicionales para la determinación de las zonas óptimas de seccionamiento.

4.5.6 Flujos por tramo
En atención que los seccionamientos probables corresponden a desarrollos que involucran los dos circuitos, no se produciría detrimento de la capacidad de transmisión por el tramo, razón por la cual los flujos no son una variable para el análisis.

4.5.7 Definición de zonas de conexión
Dado que las zonas óptimas de seccionamiento no coinciden, se realizan análisis de las inversiones involucradas en conectarse a la zona más cercana una sensibilidad con desplazamiento y cambio del número de seccionamientos.

4.5.7.1 Conexión a zonas preliminares equidistantes
Asumiendo las zonas preliminares como puntos de conexión se evalúa la inversión necesaria para conectarse al punto más cercano, lo que resume en la siguiente tabla:
4.5.7.2 Conexión con desplazamiento de seccionadoras (Alternativa 1)

Haciendo un análisis de sensibilidad con respecto a desplazar las dos seccionadoras a Talinay y El Arrayán respectivamente se obtienen los siguientes resultados:

<table>
<thead>
<tr>
<th>Proyecto/Instalación</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
<th>Inversión [MMUS$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punta Sierra</td>
<td>Las Palmas</td>
<td>17,3</td>
<td>5,2</td>
</tr>
<tr>
<td>PE Talinay Poniente</td>
<td>Seccionadora Talinay</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>PE Camarico</td>
<td>Las Palmas</td>
<td>19,6</td>
<td>5,9</td>
</tr>
<tr>
<td>PE La Gorgonia</td>
<td>Seccionadora Talinay</td>
<td>20,3</td>
<td>6,1</td>
</tr>
<tr>
<td>Monte Redondo</td>
<td>Seccionadora Talinay</td>
<td>20,6</td>
<td>6,2</td>
</tr>
<tr>
<td>La Cebada</td>
<td>Seccionadora Talinay</td>
<td>17,4</td>
<td>5,2</td>
</tr>
<tr>
<td>El Arrayán</td>
<td>Seccionadora El Arrayán</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>95,2</td>
<td>28,56</td>
</tr>
</tbody>
</table>

Como puede observarse, el efecto de llevar la seccionadora del 25% de longitud de la línea a la zona de Talinay, produciría una inversión mayor que la solución óptima, incluso haciendo perder el ahorro de desplazar la seccionadora central al punto El Arrayán.

4.5.7.3 Conexión con desplazamiento de seccionadoras (Alternativa 2)

Luego, haciendo un segundo análisis de sensibilidad para desplazar la seccionadora del 25% a la zona de Monte Redondo, se obtiene:
El cuadro anterior muestra que el desplazamiento de la S/E Seccionadora ideal del 25% hacia el sur, es más económico que su traslado hacia el norte (zona de Talinay), resultando un beneficio para el sistema con un ahorro significativo de inversión.

Si bien el análisis anterior muestra que se puede mejorar el resultado del conjunto haciendo un cambio de ubicación de las seccionadoras, el óptimo debería estar en un punto muy cercano al mostrado en la tabla anterior; por tal razón, las zonas de seccionamiento propuesto son:

- Zona en el km 70 del tramo Pan de Azúcar – Las Palmas (área de ubicación conexión Don Goyo) para seccionamiento doble. Esta S/E podría ser recomendada en el estudio de transmisión troncal 2015.
- Zona en el km 127 del tramo Pan de Azúcar – Las Palmas (área entre las conexiones al troncal de Monte Redondo y La Cebada) para seccionamiento doble. Esta S/E podría ser recomendada en el estudio de transmisión troncal 2015.
- Para el caso de Punta Sierra, en atención a que la declaración en construcción corresponde a la subestación y no la central, este proyecto podrá conectarse provisoriamente en derivación, en atención a la Resolución Exenta 297, y luego deberá ser normalizada a una de las S/E del tramo donde se conecta.

4.5.8 Asignación de zonas de conexión a proyectos catastrados

De acuerdo con las consideraciones de los puntos anteriores, para los proyectos presentados se tienen las siguientes alternativas:

- Instalación El Arrayán tendrá como alternativas de regularización de conexión la S/E seccionadora en las cercanías de El Arrayán o la S/E Seccionadora en las cercanías del km 27 del tramo Las Palmas - Pan de Azúcar.
- Instalaciones Talinay (con su aumento de potencia), Monte Redondo y La Cebada, tendrán como alternativas de regularización de conexión la S/E seccionadora en las cercanías del km 27 del tramo Las Palmas - Pan de Azúcar, la S/E seccionadora en las cercanías de El Arrayán o la S/E Las Palmas.
- S/E Punta Sierra, por haberse declarado en construcción antes del 31 de diciembre de 2014, tiene como alternativa la conexión provisoria en tap off, en espera de la
construcción de la S/E seccionadora en las cercanías del km 27 del tramo Las Palmas - Pan de Azúcar.

- PE Camarico y PE La Gorgonia tendrán como alternativas de regularización de conexión la S/E seccionadora en las cercanías del km 27 del tramo Las Palmas - Pan de Azúcar, la S/E seccionadora en las cercanías de El Arrayán o la S/E Las Palmas.

Para el desarrollo de las SS/EE seccionadoras los interesados en conectarse a ellas deberán acordar el punto de seccionamiento dentro de la zona óptima definida.

4.6 Tramo Las Palmas – Los Vilos 220 kV

4.6.1 Esquema gráfico

El tramo se muestra en la Figura 26:

Figura 26: Tramo Las Palmas – Los Vilos 220 kV

4.6.2 Consideraciones seccionamiento uno o dos circuitos

Este tramo corresponde a una línea de doble circuito en toda su extensión, razón por la cual no existe posibilidad de seccionar uno de los circuitos.

4.6.3 Distancia entre puntos de conexión

Dado que la distancia mínima de seccionamiento (doble) desde una barra existente, se considera en 40 km; y que la longitud del tramo total es de 78,1 km, es decir casi el doble de la distancia mínima, se justificaría un seccionamiento para proyectos en el centro del tramo Las Palmas – Los Vilos; es decir, en el km 39.
4.6.4 Proyectos catastrados
Para este tramo no existen proyectos catastrados.

4.6.5 Proyectos de transmisión
En la actualidad no existen proyectos de transmisión para la zona.

4.6.6 Flujos por tramo
En atención que los seccionamientos probables corresponden a desarrollos que involucrarían los dos circuitos, no se produciría detrimento de la capacidad de transmisión por el tramo, razón por la cual los flujos no son una variable para éste ni futuros análisis.

4.6.7 Definición de zonas de conexión
De acuerdo con los análisis de los puntos anteriores la zona de seccionamiento posible sería la siguiente:

- Zona en el km 39 del tramo Las Palmas – Los Vilos para seccionamiento doble.

4.6.8 Asignación de zonas de conexión a proyectos catastrados
Debido a que no existen proyectos catastrados para la zona, se concluye que los proyectos futuros que consideren su conexión al tramo, lo podrán hacer a las barras Las Palmas o Los Vilos, y en la futura S/E seccionadora en el centro del vano.

Para el desarrollo de la S/E seccionadora los interesados en conectarse a ella deberán acordar el punto de seccionamiento dentro de la zona óptima definida.

4.7 Tramo Los Vilos – Nogales 220 kV

4.7.1 Esquema gráfico
El tramo y los proyectos en desarrollo catastrados en éste se muestran en la Figura 27:
4.7.2 Consideraciones seccionamiento uno o dos circuitos
Este tramo corresponde a una línea de doble circuito en toda su extensión, razón por la cual no existe posibilidad de seccionar uno de los circuitos.

4.7.3 Distancia entre puntos de conexión
En cuanto a la distancia mínima de seccionamiento (doble) desde una barra existente, se considera 40 km; luego, por la longitud del tramo 102 km, por ser mayor que el tramo de 80 km, podrían justificarse dos seccionamientos para proyectos en un tercio y dos tercios del tramo Los Vilos - Nogales; es decir, en el km 34 y 68.

4.7.4 Proyectos catastrados
Los proyectos catastrados para el tramo en cuestión son:

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Potencia [MW]</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV Doña Carmen</td>
<td>40</td>
<td>Nogales</td>
<td>27</td>
</tr>
<tr>
<td>CT Respaldo Doña Carmen</td>
<td>70</td>
<td>Nogales</td>
<td>27</td>
</tr>
<tr>
<td>CT Ecodiesel Plásticos y Neumático</td>
<td>14</td>
<td>Nogales</td>
<td>27</td>
</tr>
<tr>
<td>CT Ecodiesel GAC</td>
<td>8,4</td>
<td>Nogales</td>
<td>27</td>
</tr>
<tr>
<td>PV Catapilco</td>
<td>50</td>
<td>Nogales</td>
<td>22</td>
</tr>
</tbody>
</table>

4.7.5 Proyectos de transmisión
En la actualidad no existen proyectos de transmisión para la zona.
4.7.6 Flujos por tramo

En atención que los seccionamientos probables corresponden a desarrollos que involucrarían los dos circuitos, no se produciría detrimento de la capacidad de transmisión por el tramo, razón por la cual los flujos no son una variable para éste ni futuros análisis.

4.7.7 Definición de zonas de conexión

De acuerdo con los análisis de los puntos anteriores las zonas de seccionamiento posible serían las siguientes:

- Zona en el km 34 del tramo Los Vilos - Nogales para seccionamiento doble.
- Zona en el km 68 del tramo Los Vilos - Nogales para seccionamiento doble.

4.7.8 Asignación de zona de conexión a proyectos catastrados

De acuerdo con las consideraciones de los puntos anteriores, para los proyectos presentados se tienen las siguientes alternativas:

- CT Doña Carmen, PV Doña Carmen, CT Ecodiesel GAC y CT Ecodiesel Plásticos y Neumáticos tendrá como alternativas de regularización de conexión la S/E seccionadora en el km 68 del tramo Los Vilos – Nogales; la S/E seccionadora en el km 34 del tramo Los Vilos Nogales, o las SS/EE Nogales o Los Vilos.
- PV Catapilco tendrá como alternativa de conexión la S/E seccionadora en el km 68 del tramo Los Vilos – Nogales o la S/E Nogales.

4.8 Tramo Nogales – Quillota 220 kV

4.8.1 Esquema gráfico

El tramo se muestra en la Figura 28.

![Figura 28: Tramo Nogales – Quillota 220 kV](image-url)
4.8.2 Consideraciones seccionamiento uno o dos circuitos
Este tramo corresponde a una línea de doble circuito en toda su extensión, razón por la cual no existe posibilidad de seccionar uno de los circuitos.

4.8.3 Distancia entre puntos de conexión
Dado que la distancia mínima de seccionamiento (doble) desde una barra existente, se considera en 40 km y que la longitud del tramo es de 28,4 km, menor que el tramo de 40 km, no se podrían justificar seccionamientos intermedios para proyectos en el tramo Nogales - Quillota.

4.8.4 Proyectos catastrados
No existen proyectos catastrados para el tramo en cuestión.

4.8.5 Proyectos de transmisión
En la actualidad no existen proyectos de transmisión para la zona.

4.8.6 Flujos por tramo
En atención que los seccionamientos probables corresponden a desarrollos que involucrarían los dos circuitos, no se produciría detrimento de la capacidad de transmisión por el tramo, razón por la cual los flujos no son una variable para éste ni futuros análisis.

4.8.7 Definición de zonas de conexión
Para los proyectos futuros sólo existen como alternativas de conexión las SS/EE en los extremos de la línea; es decir, Nogales y Quillota.

4.8.8 Asignación de zona de conexión a proyectos catastrados
En atención a que no existen proyectos catastrados en la zona, no aplica asignación alguna.

4.9 Tramo Nogales – Polpaico 220 kV

4.9.1 Esquema gráfico
El tramo y los proyectos en desarrollo catastrados en éste se muestran en la Figura 29:
4.9.2 Consideraciones seccionamiento uno o dos circuitos

Este tramo corresponde a una línea de doble circuito en toda su extensión, razón por la cual no existe posibilidad de seccionar uno de los circuitos.

4.9.3 Distancia entre puntos de conexión

Dado que la distancia mínima de seccionamiento (doble) desde una barra existente, se considera en 40 km; por la longitud del tramo de 77,2 km, casi el doble de la distancia mínima, se justificaría un seccionamiento para proyectos en el centro del tramo Nogales – Polpaico; es decir, en el km 38,6.

4.9.4 Proyectos catastrados

No existen proyectos catastrados para el tramo en cuestión.

4.9.5 Proyectos de transmisión

En la actualidad no existen proyectos de transmisión para la zona.

4.9.6 Flujos por tramo

En atención que los seccionamientos probables corresponden a desarrollos que involucrarían los dos circuitos, no se produciría detrimento de la capacidad de transmisión por el tramo, razón por la cual los flujos no son una variable para éste ni futuros análisis.

4.9.7 Definición de zonas de conexión

De acuerdo con los análisis de los puntos anteriores se proponen las siguientes zonas de seccionamiento:
• Zona en el km 38,6 del tramo Nogales – Polpaico para seccionamiento doble.

4.9.8 Asignación de zona de conexión a proyectos catastrados

En atención a que no existen proyectos catastrados en la zona, no aplica asignación alguna.

4.10 Tramo Quillota - Polpaico 220 kV

4.10.1 Esquema gráfico

El tramo y los proyectos en desarrollo catastrados en éste se muestran en la Figura 30:

Figura 30: Tramo Quillota – Polpaico 220 kV

4.10.2 Consideraciones seccionamiento uno o dos circuitos

Este tramo corresponde a una línea de doble circuito en toda su extensión, razón por la cual no existe posibilidad de seccionar uno de los circuitos.

4.10.3 Distancia entre puntos de conexión

Dado que la distancia mínima de seccionamiento (doble) desde una barra existente, se considera en 40 km; y que la longitud del tramo total es de 52 km, por su aproximación a la distancia mínima, no se justificaría un seccionamiento para nuevos proyectos.

4.10.4 Proyectos catastrados

Los proyectos catastrados para el tramo en cuestión son:

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Potencia [MW]</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV Olmué</td>
<td>126</td>
<td>Quillota</td>
<td>12,2</td>
</tr>
</tbody>
</table>
El proyecto PV Olmué se encuentra declarado en construcción antes del 31 de diciembre de 2014, razón por la cual la NTSyCS le permite seccionar el tramo en el punto proyectado.

4.10.5 Proyectos de transmisión
En la actualidad no existen proyectos de transmisión para la zona.

4.10.6 Flujos por tramo
En atención que los seccionamientos probables corresponden a desarrollos que involucrarían los dos circuitos, no se produciría detrimento de la capacidad de transmisión por el tramo, razón por la cual los flujos no son una variable para éste ni futuros análisis.

4.10.7 Definición de zonas de conexión
De acuerdo con los análisis de definición de zonas de conexión de los puntos anteriores, se propone la siguiente zona de seccionamiento:

- Zona en el km 11,26 del tramo Quillota – Polpaico para seccionamiento doble.

4.10.8 Asignación de zona de conexión a proyectos catastrados
De acuerdo con las consideraciones de los puntos anteriores, para los proyectos presentados se tienen las siguientes alternativas:

- PV Olmué tendrá como alternativas de conexión, S/E Quillota, S/E Polpaico o S/E seccionadora en el km 11,2 desde Quillota a Polpaico.

4.11 Tramo Charrúa – Cautín/Temuco 220 kV

4.11.1 Esquema gráfico
El tramo y los proyectos en desarrollo catastrados en éste se muestran en la Figura 31.
4.11.2 Consideraciones seccionamiento uno o dos circuitos

Este tramo posee cuatro zonas donde los circuitos se encuentran a más de 1 km, las que se ubican aproximadamente entre: 7 y 63 km de Charrúa; 78 y 128 km de Charrúa; 131 y 190 km de Charrúa y entre 192 y 196 km de Charrúa; luego, con excepción de los primeros 8 km de la primera zona y la última zona completa, en las restantes se pueden estudiar los seccionamientos simples.

4.11.3 Distancia entre puntos de conexión

Dado que la distancia mínima de seccionamiento (doble) desde una barra existente, se considera en 40 km; y que la longitud del tramo en doble circuito es de 204,2 km, se justificarían 4 seccionamientos para proyectos, de los cuales uno corresponde a la S/E Mulchén existente.

Considerando la longitud entre la S/E Charrúa y la S/E Mulchén (68,2 km), existiría la posibilidad de un seccionamiento intermedio, que por simetría debería ubicarse en el km 34 desde Charrúa. Además de lo anterior, dada la longitud entre Mulchén y Cautín (136 km), los seccionamientos intermedios estarían en los kilómetros 45 y 90 km desde Mulchén.

4.11.4 Proyectos catastrados

Los proyectos catastrados para el tramo en cuestión son:
De acuerdo con lo anterior, de los proyectos catastrados, no existe coincidencia de su ubicación con las zonas óptimas de seccionamiento doble; sin embargo, los proyectos: San Gabriel, Piñón Blanco y S/E Los Peumos, se encontrarían en zonas de potenciales seccionamientos simples.

Además de lo anterior, es necesario tener en consideración que en el tramo existen conexiones en derivación y seccionamientos de sólo un circuito, los cuales pueden servir como puntos factibles de conexión o considerarse a futuro un posible traslado con el propósito de regularizar las instalaciones troncales. Dichas instalaciones son:

<table>
<thead>
<tr>
<th>Conexión</th>
<th>Tipo conexión</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH Laja</td>
<td>Tap-off</td>
<td>Charrúa</td>
<td>18</td>
</tr>
<tr>
<td>S/E Duqueco</td>
<td>Seccionamiento</td>
<td>Mulchén</td>
<td>20</td>
</tr>
</tbody>
</table>

4.11.5 Proyectos de transmisión

Para el tramo en cuestión no existen proyectos de transmisión; sin embargo, por cumplimiento normativo el Tap-off existente para la CH Laja debe regularizarse, y la S/E Duqueco no posee un estándar para SS/EE del sistema troncal.

4.11.6 Flujos por tramo

En atención a las diferentes capacidades de transmisión y longitudes que poseen los circuitos, existirá efecto en las capacidades dependiendo de la redistribución de los flujos posterior a la contingencia.

Es importante destacar que las revisiones de los flujos por tramo se realizan con desarrollos efectivos en generación, transmisión y consumo, por lo que los efectos de oferta de generación adicional, sólo serán visualizados con posterioridad a su declaración en construcción. Los flujos actuales esperados se muestran en la Figura 32.

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Potencia [MW]</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE Campo Lindo</td>
<td>145,2</td>
<td>Charrúa</td>
<td>30,2</td>
</tr>
<tr>
<td>PE Renaico</td>
<td>105,6</td>
<td>Mulchén</td>
<td>5,2</td>
</tr>
<tr>
<td>PE San Gabriel</td>
<td>201,3</td>
<td>Mulchén</td>
<td>26,3</td>
</tr>
<tr>
<td>PE Piñón Blanco</td>
<td>168,3</td>
<td>Mulchén</td>
<td>27</td>
</tr>
<tr>
<td>PE Malloco</td>
<td>270</td>
<td>Mulchén</td>
<td>39</td>
</tr>
<tr>
<td>PE Collipulli</td>
<td>48</td>
<td>Mulchén</td>
<td>44</td>
</tr>
<tr>
<td>PE Trigales</td>
<td>136</td>
<td>Mulchén</td>
<td>49</td>
</tr>
<tr>
<td>S/E Los Peumos</td>
<td>-</td>
<td>Temuco</td>
<td>57,6</td>
</tr>
</tbody>
</table>
De acuerdo con los flujos mostrados en la Figura 32, no se visualiza la urgencia de controlar las contingencias conectando en paralelo los circuitos en los seccionamientos, por lo que deberá revisarse dicha situación con los desarrollos futuros.

4.11.7 Definición de zonas de conexión

Dado que las zonas óptimas de seccionamiento no coinciden con la ubicación de los proyectos catastrados, se realizan análisis de las inversiones involucradas en conectar dichos proyectos a las zonas más cercanas y análisis de sensibilidad con desplazamiento y cambio del número de seccionamientos.

4.11.7.1 Conexión a zonas preliminares equidistantes:

Asumiendo las zonas óptimas como puntos de conexión se evalúa la inversión necesaria para conectarse al punto más cercano, lo que se resume en la siguiente tabla:
4.11.7.2 Conexión con desplazamiento de seccionadoras (Alternativa)

Haciendo un análisis de sensibilidad con respecto a desplazar la Seccionadora $\frac{1}{2}$ a Campo Lindo y la Seccionadora $\frac{1}{3}$ a Malleco, se obtienen los siguientes resultados:

<table>
<thead>
<tr>
<th>Proyecto/Instalación</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
<th>Inversión [MMUSS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH Laja</td>
<td>Charrúa</td>
<td>18</td>
<td>5,4</td>
</tr>
<tr>
<td>S/E Duqueco</td>
<td>Seccionadora $\frac{1}{2}$</td>
<td>18,5</td>
<td>5,6</td>
</tr>
<tr>
<td>PE Campo Lindo</td>
<td>Seccionadora $\frac{1}{2}$</td>
<td>3,8</td>
<td>1,1</td>
</tr>
<tr>
<td>PE Renaico</td>
<td>Mulchén</td>
<td>5,2</td>
<td>1,6</td>
</tr>
<tr>
<td>PE San Gabriel</td>
<td>Mulchén</td>
<td>26,3</td>
<td>7,9</td>
</tr>
<tr>
<td>PE Piñón Blanco</td>
<td>Seccionadora $\frac{1}{3}$</td>
<td>25,5</td>
<td>7,7</td>
</tr>
<tr>
<td>PE Malleco</td>
<td>Seccionadora $\frac{1}{3}$</td>
<td>6</td>
<td>1,8</td>
</tr>
<tr>
<td>PE Collipulli</td>
<td>Seccionadora $\frac{1}{3}$</td>
<td>5</td>
<td>1,5</td>
</tr>
<tr>
<td>PE Trigales</td>
<td>Seccionadora $\frac{1}{3}$</td>
<td>4</td>
<td>1,2</td>
</tr>
<tr>
<td>S/E Los Peumos</td>
<td>Seccionadora $\frac{1}{3}$</td>
<td>20</td>
<td>6,0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>132,3</td>
<td>39,69</td>
</tr>
</tbody>
</table>

Lo anterior muestra que existe un efecto positivo al desplazar el Seccionamiento $\frac{1}{2}$ al punto de seccionamiento de Campo Lindo, debido a la reducción en longitud de líneas. En el caso del desplazamiento del Seccionamiento $\frac{1}{3}$ al punto de seccionamiento de Malleco, no se produce efecto significativo, razón por la cual se estaría en una indiferencia entre los proyectos.

4.11.7.3 Conexión con alternativas a simple circuito

En consideración a que los puntos de conexión de los proyectos: PE San Gabriel, PE Piñón Blanco y el retiro Los Peumos, se encuentran en zonas factibles de seccionamiento simple, se

2 Seccionadora $\frac{1}{2}$ corresponde a la seccionadora entre Charrúa y Mulchén. Seccionadora $\frac{1}{3}$ corresponde a la seccionadora a 45 km de Mulchén hacia Temuco.
analiza si dichas conexiones son factibles de desarrollar en forma simultánea y el efecto que produciría dicha conexión en la elección de los seccionamientos dobles.

Al analizar la suma de las potencias de los proyectos de generación (369,6 MW), si se considera la inyección simultánea al simple circuito, se superaría su capacidad de transmisión, lo que produciría ineficiencias para el sistema. Por otra parte, la distancia entre los puntos de conexión de ambos proyectos de generación (4,3 km) es menor a la distancia permitida para seccionamientos simples, lo que no sería óptimo económico. Lo anterior permite concluir que existiría espacio para un seccionamiento en circuito simple.

Para el caso del retiro Los Peumos, la conexión con seccionamiento simple no tendría efectos económicos ni técnicos, por lo que podría ser permitida.

A continuación se muestra el análisis considerando la conexión de uno de los proyectos de generación y el retiro Los Peumos a la línea de simple circuito, se incluyen los costos de seccionamiento como longitud de línea equivalente para comparar con los casos de las subsecciones anteriores, obteniéndose lo siguiente:

<table>
<thead>
<tr>
<th>Proyecto/Instalación</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
<th>Inversión [MMUS$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH Laja</td>
<td>Campo Lindo</td>
<td>14</td>
<td>4,2</td>
</tr>
<tr>
<td>S/E Duqueco</td>
<td>Campo Lindo</td>
<td>22,3</td>
<td>6,7</td>
</tr>
<tr>
<td>PE Campo Lindo</td>
<td>Campo Lindo</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>PE Renaco</td>
<td>Mulchén</td>
<td>5,2</td>
<td>1,6</td>
</tr>
<tr>
<td>PE San Gabriel</td>
<td>Mulchén</td>
<td>26,3</td>
<td>7,9</td>
</tr>
<tr>
<td>PE Piñón Blanco</td>
<td>Piñón Blanco</td>
<td>14,3</td>
<td>4,3</td>
</tr>
<tr>
<td>PE Malleco</td>
<td>Malleco</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>PE Collipulli</td>
<td>Mulchén</td>
<td>5</td>
<td>1,5</td>
</tr>
<tr>
<td>PE Trigales</td>
<td>Malleco</td>
<td>10</td>
<td>3,0</td>
</tr>
<tr>
<td>S/E Los Peumos</td>
<td>Los Peumos</td>
<td>14,3</td>
<td>4,3</td>
</tr>
<tr>
<td>Total</td>
<td>111,4</td>
<td></td>
<td>33,42</td>
</tr>
</tbody>
</table>

El análisis anterior muestra que se puede mejorar el resultado del conjunto, haciendo un cambio de ubicación de una de las seccionadoras del doble circuito y realizando un seccionamiento simple para proyectos de generación y el proyecto de retiro, el óptimo se encontraría en un punto muy cercano al mostrado en la tabla anterior; por tal razón, las zonas de seccionamientos propuestos son:

- Zona en el km 30 del tramo Charrúa – Mulchén para seccionamiento doble.
- Zona entre el km 39 y 49 del tramo Mulchén – Cautín para seccionamiento doble.

3 Se debe considerar que el valor de la subestación es completo, pero que los costos de los paños de línea en el caso base son traspasados a costo de subestación.
Zona en el km 90 del tramo Mulchén – Cautín para seccionamiento doble de proyectos futuros.

Zona entre el km 92 y 96,5 del circuito simple desde Charrúa para conexión de proyectos de generación.

Zona en el km 139 del circuito simple desde Charrúa para conexión del retiro Los Peumos.

4.11.8 Asignación de zona de conexión a proyectos catastrados

De acuerdo con las consideraciones de los puntos anteriores, para los proyectos presentados y regularización de instalaciones existentes se tienen las siguientes alternativas:

- CH Laja tendrá como alternativas de conexión, S/E Charrúa, S/E Seccionadora km 30 desde Charrúa a Mulchén y S/E Mulchén.
- S/E Duqueco tendrá como alternativas de conexión, S/E Charrúa, S/E Seccionadora km 30 desde Charrúa a Mulchén y S/E Mulchén.
- PE Campo Lindo tendrá como alternativas de conexión, S/E Charrúa, S/E Seccionadora km 30 desde Charrúa a Mulchén y S/E Mulchén.
- PE Renaico tendrá como alternativas de conexión, S/E Mulchén, S/E Seccionadora en el kilómetro 30 desde Charrúa a Mulchén y S/E Seccionadora entre el kilómetro 39 y 49 desde Mulchén a Cautín. En atención a su declaración en construcción y a la modificación establecida en la Resolución Exenta 297, existiría la posibilidad de conectarse en derivación provisoria en el punto indicado en su resolución de calificación ambiental.
- PE Piñón Blanco tendrá como alternativas de conexión, S/E Mulchén y S/E Seccionadora entre el kilómetro 39 y 49 desde Mulchén a Cautín y la S/E seccionadora del simple circuito entre el kilómetro 92 y 96,5 desde Charrúa.
- PE San Gabriel tendrá como alternativas de conexión, S/E Mulchén, S/E Seccionadora entre el kilómetro 39 y 49 desde Mulchén a Cautín y S/E seccionadora del simple circuito entre el kilómetro 92 y 96,5 desde Charrúa.
- PE Malleco tendrá como alternativas de conexión, S/E Mulchén y S/E Seccionadora entre el kilómetro 39 y 49 desde Mulchén a Cautín.
- PE Trigales tendrá como alternativas de conexión, S/E Mulchén y S/E Seccionadora entre el kilómetro 39 y 49 desde Mulchén a Cautín.
- PE Collipulli tendrá como alternativas de conexión, S/E Mulchén y S/E Seccionadora entre el kilómetro 39 y 49 desde Mulchén a Cautín.
- S/E Los Peumos tendrá como alternativas de conexión, S/E Mulchén, S/E Seccionadora entre el kilómetro 39 y 49 desde Mulchén a Cautín, S/E Seccionadora km 90 desde Mulchén a Cautín y S/E Seccionadora en el km 139 del circuito simple desde Charrúa.
Para el desarrollo de las SS/EE seccionadoras los interesados en conectarse a ellas deberán acordar el punto de seccionamiento dentro de la zona óptima definida.

4.12 Tramo Cautín – Ciruelos

4.12.1 Esquema gráfico

El tramo y los proyectos en desarrollo catastrados en éste se muestran en la Figura 33.

Figura 33: Tramo Cautín – Ciruelos 220 kV

4.12.2 Consideraciones seccionamiento uno o dos circuitos

Este tramo corresponde a una línea de doble circuito en toda su extensión, razón por la cual no existe posibilidad de seccionar uno de los circuitos.

4.12.3 Distancia entre puntos de conexión

Dado que la distancia mínima de seccionamiento (doble) desde una barra existente, se considera en 40 km; y la longitud del tramo es de 110 km, se justificarían 2 seccionamientos para proyectos a 1/3 y 2/3 del tramo; es decir en el kilómetro 37 desde Cautín y 73 desde Ciruelos (a 37 km de Ciruelos).

4.12.4 Proyectos catastrados

Los proyectos catastrados para el tramo en cuestión son:
En atención a que la ubicación de ambos proyectos catastrados se encuentran cercanos al punto óptimo, la ubicación de la subestación seccionadora se puede ubicar en el km 35.

4.12.5 Proyectos de transmisión

En la actualidad no existen proyectos de transmisión para este tramo.

4.12.6 Flujos por tramo

En atención que los seccionamientos probables corresponden a desarrollos que involucrarían los dos circuitos, no se produciría detrimento de la capacidad de transmisión por el tramo, razón por la cual los flujos no son una variable para éste ni futuros análisis.

4.12.7 Definición de zonas de conexión

En el tramo, son posibles 2 seccionamientos:

- Seccionamiento doble en el km 37 del tramo Cautín – Ciruelos, medidos desde Cautín.
- Seccionamiento doble en el km 75 del tramo Cautín – Ciruelos, medidos desde Cautín.

4.12.8 Asignación de zona de conexión a proyectos catastrados

De acuerdo con las consideraciones de los puntos anteriores, para los proyectos presentados se tienen las siguientes alternativas:

- S/E Lastarria podrá conectarse en el seccionamiento de la zona aproximada de 35 km desde S/E Ciruelos.
- CH Neltume podrá conectarse a seccionar en el seccionamiento de la zona aproximada ede 35 km desde S/E Ciruelos.

Para el desarrollo de la S/E seccionadora los interesados en conectarse deberán acordar el punto de seccionamiento dentro de la zona óptima definida.

4.13 Tramo Valdivia – Rahue – Puerto Montt 220 kV

4.13.1 Esquema gráfico

El tramo y los proyectos en desarrollo catastrados en éste se muestran en la Figura 34.
4.13.2 Consideraciones seccionamiento uno o dos circuitos

Considerando que el tramo entre Valdivia y Rahue posee una configuración de doble circuito, sólo el tramo Rahue – Puerto Montt es considerado para los seccionamientos simples.

Este tramo, posee casi la longitud completa de la línea donde los circuitos se encuentran a más de 1 km, por lo que se puede aplicar el criterio de distancia mayor a 15 km desde una barra existente para evaluar los seccionamientos simples.

4.13.3 Distancia entre puntos de conexión

Dado que la distancia mínima de seccionamiento (doble) desde una barra existente, se considera en 40 km; y la longitud del tramo es de 102 km, se justificaría 1 seccionamiento para proyectos en el centro del tramo (km 51).

4.13.4 Proyectos catastrados

Los proyectos catastrados para el tramo en cuestión son:

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Potencia [MW]</th>
<th>Barra próxima</th>
<th>Distancia [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE Starkerwind</td>
<td>106</td>
<td>Rahue/Pto. Montt</td>
<td>51</td>
</tr>
<tr>
<td>PE Aurora</td>
<td>130</td>
<td>Pto. Montt</td>
<td>30,5</td>
</tr>
<tr>
<td>PE Llanquihue</td>
<td>74</td>
<td>Pto. Montt</td>
<td>31</td>
</tr>
<tr>
<td>S/E Llanquihue</td>
<td>-</td>
<td>Pto. Montt</td>
<td>21,6</td>
</tr>
</tbody>
</table>

De acuerdo con lo anterior, de los proyectos catastrados, sólo el proyecto Starkerwind se encuentra en la ubicación de zonas óptimas para seccionamiento doble; sin embargo, debido a
que la distancia entre los circuitos en dicha zona es mayor que 1 km, se podría analizar el seccionamiento simple. El resto de los proyectos se encuentra en zonas de eventuales seccionamientos simples; sin embargo, debido a la inminente ubicación de la S/E Nueva Puerto Montt, dichos seccionamientos no serían factibles por su cercanía con la S/E Nueva Puerto Montt.

4.13.5 Proyectos de transmisión

Para el tramo en cuestión existe un proyecto de transmisión troncal que seccionaría los circuitos Rahue – Puerto Montt al norte de la S/E Puerto Montt, pero cuya ubicación no se encuentra definida con exactitud y cuya fecha de construcción sería posterior a 2018.

4.13.6 Flujos por tramo

En la actualidad existe una capacidad diferente para ambos circuitos, lo cual debería ser corregido por proyectos de ampliación de las instalaciones troncales. En consideración de lo anterior, asumiendo que en el futuro ambos circuitos posean la misma capacidad de transmisión, no se requiere análisis de flujo por tramo.

4.13.7 Definición de zonas de conexión

Dado que existe un proyecto en la ubicación de zona óptima de conexión, sin considerar la perturbación que producirá en la determinación de la zona la subestación Nueva Puerto Montt, el análisis se restringe a revisar los seccionamiento simples, agrupando los proyectos por zonas factibles, las que posteriormente deberán ser regularizadas de acuerdo con las necesidades del sistema y una vez definida la ubicación de la S/E Nueva Puerto Montt:

- Seccionamiento simple en el km 51 del tramo Rahue - Puerto Montt del Circuito 2
- Seccionamiento doble en el punto correspondiente a Nueva Puerto Montt.

4.13.8 Asignación de zona de conexión a proyectos catastrados

De acuerdo con las consideraciones de los puntos anteriores, para los proyectos presentados y regularización de instalaciones existentes se tienen las siguientes alternativas:

- PE Starkerwind tendrá como alternativas de conexión, S/E Rahue, S/E Puerto Montt o Nueva Puerto Montt y S/E Seccionadora km 51 desde Rahue a Puerto Montt del Circuito 2.
- PE Aurora podrá conectarse provisoriamente en tap off, siempre que no exista una conexión en derivación previa en el tramo en atención a las indicaciones de la Resolución Exenta 297, para en el futuro regularizar su conexión previo análisis. Además tendrá como alternativas de conexión, S/E Rahue, S/E Puerto Montt y S/E Nueva Puerto Montt.
- PE Llanquihue podrá conectarse provisoriamente en tap off, siempre que no exista una conexión en derivación previa en el tramo en atención a las indicaciones de la Resolución Exenta 297, para en el futuro regularizar su conexión previo análisis.

- S/E Llanquihue (apoyo a Puerto Varas) podrá conectarse provisoriamente en tap off, siempre que no exista una conexión en derivación previa en el tramo en atención a las indicaciones de la Resolución Exenta 297, para en el futuro regularizar su conexión previo análisis. Además tendrá como alternativas de conexión, S/E Rahue, S/E Puerto Montt y S/E Nueva Puerto Montt.

Para el desarrollo de las SS/EE seccionadoras los interesados en conectarse a ellas deberán acordar el punto de seccionamiento dentro de la zona óptima definida.
5 COMENTARIOS FINALES Y CONCLUSIONES

En general, el estudio realizado a la fecha ha cubierto las zonas del Sistema Troncal del SIC que poseen la mayor urgencia para la definición de puntos intermedios de conexión por parte de la DPD, de acuerdo a los proyectos interesados en conectarse, dejando para una siguiente etapa, que se desarrollará antes de diciembre 2015, el resto de los tramos troncales.

El análisis efectuado ha tomado como base las definiciones regulatorias establecidas en la versión actual de la NTSyCS, la cual incluye la versión de Noviembre de 2014 y la Resolución Exenta 297 de junio de 2015 la cual le da las atribuciones a la DPD para realizar las definiciones de puntos de conexión para proyectos de forma que se consideren los óptimos técnicos y económicos desde un punto de vista sistémico.

El análisis técnico-económico ha considerado el costo de desarrollo de las obras de transmisión con independencia de quién efectúe la inversión. Asimismo, las soluciones técnicas consideran el cumplimiento de las exigencias de seguridad y calidad de servicio que corresponden al sistema troncal.

La metodología aplicada ha diferenciado el análisis para seccionamientos de uno, dos o tres circuitos, considerando que los seccionamientos simples deben cumplir con la ubicación dentro de zonas óptimas y cuando la distancia entre circuitos es mayor que 1 km. En el caso de los seccionamientos dobles, la metodología considera la ubicación optimizada desplazando en casos justificado el punto preliminar con el fin de reducir las longitudes de líneas para conexión de los proyectos en desarrollo.

Este informe demuestra la importancia de planificar la ubicación de subestaciones seccionadoras del sistema de transmisión troncal y que el seccionamiento desequilibrado, en general, produce disminución de capacidad del sistema de transmisión, con los perjuicios en su uso eficiente debido a eventuales desacoplo de precios, lo que redundar en mayores costos de operación.

Adicionalmente cabe indicar que la metodología establecida y su aplicación a los tramos del SIC, además de definir los puntos de conexión de proyectos específicos, deben ser consideradas por los desarrolladores de nuevos proyectos al momento de evaluar su conexión al Sistema de Troncal del SIC.

El próximo paso en la tarea de definir la ubicación de subestaciones seccionadoras es la identificación de obras a ser incluidas en el Plan de Expansión del STT y aquellas que deberán ser promovidas por las empresas interesadas en las distintas conexiones. Para esto último, la DPD del CDEC SIC coordinará reuniones con los interesados en el desarrollo de cada zona con el propósito de identificar proyectos específicos y sus condiciones para constituirse en subestaciones troncales.